
UNIVERSIDADE FEDERAL DO PARANÁ

GUILHERME SCARIOT RAMOS

AN ANALYSIS OF DEEP GENERATIVE MODELS

CURITIBA PR

2021



GUILHERME SCARIOT RAMOS

AN ANALYSIS OF DEEP GENERATIVE MODELS

Trabalho apresentado como requisito parcial à conclusão
do Curso de Bacharelado em Ciência da Computação,
Setor de Ciências Exatas, da Universidade Federal do
Paraná.

Área de concentração: Ciência da Computação.

Orientador: David Menotti Gomes.

CURITIBA PR

2021





RESUMO

Modelos generativos podem ser usados para produzir novas amostras de dados, os
quais seguem uma certa distribuição de probabilidade. Até recentemente, modelos generativos
implementados como redes neurais eram incapazes de aprender representações de dados que
possuem distribuições altamente complexas, como conjuntos de dados contendo milhares de
fotos. O método generativo-adversário para o treinamento de redes neurais foi proposto logo
após o aumento no uso de redes neurais profundas para a classificação de imagens e, desde então,
recebeu muitas melhorias, as quais eventualmente levaram ao desenvolvimento de arquiteturas
em grande escala que são capazes de produzir imagens fotorrealísticas de alta resolução. Em vez
de simplesmente memorizar o conjunto de dados, as Redes Adversariais Generativas (Generative
Adversarial Networks - GANs) são capazes de produzir amostras de dados completamente
novas que não estão presentes no conjunto de dados real. Este trabalho apresenta o método
de treinamento adversarial e o embasamento teórico por trás dele, que empresta conceitos da
teoria da informação e da estatística. Melhorias na formulação original também são discutidas e
analisadas - isso inclui a GAN Convolucional Profunda (Deep Convolutional GAN - DCGAN); o
uso de uma aproximação da distância Wasserstein-1/Distância do Earth Mover como uma função
de custo na Wasserstein GAN (WGAN); o uso do método Gradient Penalty como uma melhoria
para GANs de Wasserstein com clip de peso; e o uso de técnicas de normalização, principalmente
o método de Normalização Espectral com a SNGAN. Embora existam alguns artigos publicados
envolvendo GANs aplicadas a tarefas como geração de som, o foco deste trabalho é a síntese
de imagens por meio do uso do método generativo-adversário por meio de aprendizagem não
supervisionada. Uma vez que para a maioria das arquiteturas os valores da função de custo não
podem ser usados como uma medida da qualidade visual subjetiva das amostras, muitos métodos
para quantificar a qualidade das amostras geradas foram propostos, como o Inception Score (IS)
e o Fréchet Inception Distance (FID), os quais são independentes da arquitetura da rede geradora.
A base teórica para ambos os métodos é discutida neste trabalho, juntamente com os detalhes
de implementação. Ambos os métodos são então aplicados à avaliação das implementações da
DCGAN, WGAN com Grandient Penalty (WGAN-GP) e da SNGAN, as quais foram treinadas
no conjunto de dados CelebA. Limitações de ambas as medidas IS e FID são apresentadas, e um
caso interessante encontrado durante os experimentos práticos - onde a medida FID é apenas
fracamente correlacionada com a qualidade da amostra - é analisado e discutido. A SNGAN
é treinada no conjunto de dados CIFAR10, e os resultados mostram a variabilidade de ambas
as medidas de quantificação quando aplicadas a amostras provenientes de geradores treinados
em conjuntos de dados diferentes, ao mesmo tempo que mostra uma variabilidade significativa
relacionada ao número de amostras. A SNGAN também é treinada em uma versão reduzida do
novo conjunto de dados Flickr-Faces-HQ (FFHQ), e seus resultados e medidas são analisadas,
um resultado que parece ainda não ter sido publicado na literatura.

Palavras-chave: Redes Adversárias Generativas. Aprendizagem Profunda. Redes Neurais.
Modelo Generativo.



ABSTRACT

Generative models can be used to produce new data points that follow a certain
probability distribution. Up until recently, generative models implemented as neural networks
were unable to learn representations of data with highly complex distributions, such as datasets
containing thousands of photos. The generative adversarial framework for training neural networks
was proposed shortly after the surge in use of deep neural networks for image classification,
and has since then received many improvements, which eventually led to the development of
large-scale architectures that are able to produce high-resolution and photorealistic images.
Instead of simply memorizing the dataset, Generative Adversarial Networks (GANs) are able to
produce completely new data points that are not present in the real dataset. This work presents
the adversarial training framework and the theoretical background behind it, which borrows
concepts from information theory and statistics. Improvements to the original formulation are
also discussed and analyzed – this includes the Deep Convolutional GAN (DCGAN); the use
of an approximation of the Wasserstein-1/Earth Mover’s Distance distance as a loss function
in the Wasserstein GAN (WGAN); the use of the Gradient Penalty method as an improvement
for weight-clipped Wasserstein GANs; and the use of normalization techniques, most notably
the Spectral Normalization method in the SNGAN. Although there has been some published
research involving GANs applied to tasks such as sound generation, the focus of this work is
image synthesis through the use of the generative adversarial framework through unsupervised
learning. Since for most architectures the loss function values cannot be used as a measure of
subjective visual quality of the samples, many architecture-agnostic methods for quantifying the
quality of the generated samples have been proposed, such as the Inception Score (IS) and the
Fréchet Inception Distance (FID). The theoretical background for both methods is discussed
in this work, together with the implementation details. Both methods are then applied to the
evaluation of implementations of the DCGAN, WGAN with Gradient Penalty (WGAN-GP)
and the SNGAN, which were trained on the CelebA dataset. Limitations of both IS and FID
measures are presented, and an interesting edge case found during the practical experiments –
where the FID measure is only weakly correlated with sample quality – is analyzed and discussed.
The SNGAN is trained on the CIFAR10 dataset, and the results show the variability of both
quantifying measures when applied to samples coming from generators trained on different
datasets, while also showing a significant variability related to the number of samples. The
SNGAN is also trained on a downsampled version of the new Flickr-Faces-HQ (FFHQ) dataset,
and its results and measures are analyzed, a result which seems to have not yet been published.

Keywords: Generative Adversarial Networks. Deep Learning. Neural Networks. Generative
Model.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 GENERATIVE AND DISCRIMINATIVE MODELS . . . . . . . . . . . . . . . 7
1.2 APPROACHES TO GENERATIVE MODELING . . . . . . . . . . . . . . . . . 8
2 INFORMATION THEORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 INFORMATION AND ENTROPY. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 CROSS-ENTROPY AND KULLBACK-LEIBLER DIVERGENCE . . . . . . . 10
2.3 CROSS-ENTROPY AS A LOSS FUNCTION . . . . . . . . . . . . . . . . . . . 11
2.4 JENSEN-SHANNON DIVERGENCE . . . . . . . . . . . . . . . . . . . . . . . 12
3 GENERATIVE ADVERSARIAL NETWORKS . . . . . . . . . . . . . . . . 13
3.1 COST FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 THE TRAINING ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 IMPLEMENTATION CHALLENGES. . . . . . . . . . . . . . . . . . . . . . . 16
3.4 KERAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 TENSORFLOW 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 SATURATING GRADIENT COMPARISON . . . . . . . . . . . . . . . . . . . 18
3.7 LABEL CONDITIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 LATENT SPACE INTERPOLATION . . . . . . . . . . . . . . . . . . . . . . . 19
4 DEEP CONVOLUTIONAL GAN . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 CONVOLUTIONAL AND TRANSPOSE CONVOLUTIONAL LAYERS . . . . 20
4.2 THE CHECKERBOARD EFFECT. . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 BATCH NORMALIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 WASSERSTEIN GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 WASSERSTEIN METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 KANTOROVICH-RUBINSTEIN DUALITY . . . . . . . . . . . . . . . . . . . 24
5.3 THE WGAN ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 WGAN IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 GRADIENT PENALTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 WGAN-GP IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 SPECTRAL NORMALIZATION GAN . . . . . . . . . . . . . . . . . . . . . 29
6.1 MATRIX NORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 SPECTRAL NORMALIZATION AND LIPSCHITZ NORM . . . . . . . . . . . 29
6.3 IMPLEMENTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 HINGE LOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



7 QUANTITATIVE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 INCEPTION SCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 FRÉCHET INCEPTION DISTANCE . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 LIMITATIONS OF INCEPTION METRICS . . . . . . . . . . . . . . . . . . . 33
8 LARGE-SCALE GENERATIVE MODELING . . . . . . . . . . . . . . . . . 34
8.1 PROGRESSIVE GROWING GAN . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 BIG GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 STYLE GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9 EXPERIMENTAL STUDIES. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1 INCEPTION METRICS IN PRACTICE . . . . . . . . . . . . . . . . . . . . . . 39
9.2 DCGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3 WGAN-GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.4 SNGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 SNGAN ON FFHQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.6 SNGAN ON CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



7

1 INTRODUCTION

One of the most astonishing recent results in the field of machine learning, and arguably
computer science research in general, is the ability to produce completely new, previously unseen,
visually coherent images that seem to mimic reality to a degree where a viewer can often be
confused about whether a sample is real or generated. Although the concepts, theory and
architectures developed for this task are not limited to the image domain, most of the recent
progress and research focus so far in this field seem to be related to image generation. It is not
entirely clear as to why this is the case, but it has been suggested that convolutional layers might
somehow make the task easier in the visual domain (see Chapter 4), with no known analogs in
other domains, such as text and sound generation. The focus of this work is related specifically
to generative models that try to learn the underlying probability distributions behind a certain
image dataset, in order to produce new images that are similar to it. Since our objective is to
produce new, realistic images, one may question how researchers can measure results produced
by a certain generative model architecture. Unlike tasks such as image classification, where
the dataset has expected class labels and, therefore, an error metric can be directly computed,
the task of generating new samples comes with no easy way of quantifying how results from a
model differ from other models. The objective of this work is to introduce the theory behind
recent advancements in the field of deep generative modeling, present and implement different
model architectures, and to quantify the generated results based on recent metrics that have been
proposed, while also analyzing the strengths and issues for each of those quantitative metrics,
and how quantitative metrics might be correlated with different choices of loss functions.

Although practical applications of deep generative modeling are not the focus of this
work, it is worth mentioning a few of them to further justify the study of this new and fascinating
research field. Deep generative modeling has been successfully applied for image super-resolution
[1], noise removal [2] and inpainting [3]. When too little data is available for training other neural
networks, deep generative models have also been used for data augmentation, with a common
example being providing new synthetic data for medical image classifiers [4]. These models have
been also used for conditional image synthesis, such as generating an image that is described by
an input text (text-to-image) [5], and generating realistic portraits of people when only a set of
edges are given [6].

1.1 GENERATIVE AND DISCRIMINATIVE MODELS

In the field of statistical classification, a discriminative classifier is a classifier that models the
posterior p(y |x) directly – that is, given an input x, it tries to directly map x to class labels.
The classic example of such a classifier are linear regression classifiers. In contrast, generative
classifiers try to model the joint distribution p(x, y), and the probability p(y |x) can be then
calculated via Bayes chain rules. Examples of generative classifiers are Naïve Bayes classifiers.
The term generative models, as used in this work and other recent publications, might differ
from the standard statistical classification and textbook terminology. As we shall see in the
following chapters, neural network-based generative models usually take noise (often called
latent variables, a term that comes from the probabilistic graphical models literature) that follow
a certain probability distribution, such as a Gaussian distribution, which is fed-forward through
the network, transforming it into a new image sample. To avoid confusion, it is important to
make clear that the term model is loosely used in this work and also in the generative modeling



8

literature, but usually refers to a neural network architecture and its learned parameters, which
are able to transform random input noise into new data that resembles the original training data in
a one-shot manner. This can be contrasted with other methods proposed in the literature, such as
auto-regressive models, with an example being the PixelCNN [7], where each pixel is generated
based on a neighbourhood of other pixels.

1.2 APPROACHES TO GENERATIVE MODELING

The proposal of Generative Adversarial Networks (GANs) in 2014 by Goodfellow et al. [8] has
sparked great interest in the field of generative modeling, with the original paper alone having
over 25 thousand citations as of late 2020. Despite the fact that it has clearly taken over as
the main approach to generative modeling, it is useful to inspect older proposals for it, which
will enable us to understand basic statistical concepts, how GANs fit into the big picture of this
research area and, more importantly, what are their advantages over older model proposals.

Up until recently, generative modeling had remained as a relatively fringe topic within statistics
and machine learning research, much like neural networks had been an almost forgotten subject
within the artificial intelligence research community until the last decade. After the publication
of AlexNet in 2012 [9] and its subsequent success over traditional image classification methods
used in competitions, researchers realized that relatively simple network architectures were able
to outperform older classification methods that were based on hand-crafted feature extractors,
such as the Scale Invariant Feature Transform, coupled with classifiers such as the Support
Vector Machine.

For generative modeling, where the task is to learn the probability distributions underlying a
dataset, the same concept was found to be true – relatively simple neural network architectures
were able to produce samples that had a higher subjective visual quality then those produced by
older, heavily theory-based statistical methods. A prime example of this are Fully Visible Belief
Networks (FVBNs) [10], which falls into the class of the so-called explicit density models. This
model uses the principle of Maximum Likelihood Estimation (MLE), which tries to choose the
parameters for the model in such a way that the likelihood that the model assigns to the training
data is maximized [11]. GANs notoriously do not necessarily fall under the maximum likelihood
category, and although this produces an inferior likelihood estimator, it is paradoxically able to
produce better visual results. Unlike GANs, which can produce results in a parallel, one-shot
manner, explicit density models such as FVBNs generate samples step by step, which leads to a
high running time, making it unpractical for real-time use. Other than FVBNs, another model
proposed that is highly worth mentioning are Variational Autoencoders (VAEs) [12], which is a
explicit density method that maximizes the log-likelihood of the density function by maximizing
a lower bound called the Evidence Lower Bound (ELBO). Other than GANs, Variational
Autoencoders seem to be the major and most-cited proposal that is able to produce images with a
considerable high degree of visual quality.

Although the GAN adversarial concept and its training algorithm can be implemented with any
kind of feed-forward neural network such as a simple Multilayer Perceptron (MLP), virtually all
successful architectures within the image domain seem to implement Convolutional Neural
Networks (CNNs), most notably the highly cited Deep Convolutional Generative Adversarial
Network (DCGAN) [13] and its variations. Even if GANs have limited real-world applicability
as of today, having an algorithm that is able to master and capture visual concepts within an



9

extremely high dimensional dataset shows how far artificial intelligence research has come, and
might give us a foresight about what is possible to accomplish with neural networks in the future.
Given enough computing time and power, GANs are able to produce the most realistic images
ever produced by any kind of generative model, and thus will be the main focus of this study.



10

2 INFORMATION THEORY

Before introducing Generative Adversarial Networks, it is useful to discuss some topics
on the field of information theory, which will help clarify cost functions used in neural networks
and also the theoretical framework for this generative modeling method. We will discuss the
discrete case of these concepts, although continuous analogs do exist.

2.1 INFORMATION AND ENTROPY

The information content of a certain event occurring measures, roughly speaking, the amount of
surprise contained in it. An event with low probability to occur gives us a higher quantity of
information, and vice-versa. This concept is particularly useful for finding optimal codings when
transmitting data, by allocating events with higher probability to smaller message sizes, but it is
also a foundational concept for comparing different probability functions. Consider a random
variable X . We will now introduce some useful elementary definitions.

Definition 2.1.1 The information content, or simply information of a given random event X = x
is defined as the inverse of the log-probability of this event occurring:

I(x) = log
1

p(x)
= − log p(x). (2.1)

Definition 2.1.2 The entropy of a random variable X is defined as the expected value of the
information content of X , which can be interpreted as the average value of information or
surprise for possible outcomes over this random variable:

H(X) = E [I(X)] =
∑

x

p(x)I(x) = −
∑

x

p(x) log p(x). (2.2)

The measurement units for entropy are bits for a logarithm with basis 2, and nats for the natural
logarithm. When talking about probability distributions directly, where x is sampled from a
distribution p, we might also use the notation:

H(p) = −
∑

x

p(x) log p(x). (2.3)

2.2 CROSS-ENTROPY AND KULLBACK-LEIBLER DIVERGENCE

Before discussing cross-entropy in a more general sense, let us consider the context of its
inception, which is related to communication and message encodings. Consider two probability
distributions, p and q. These distributions define how likely a word is to appear in a message,
given the same word list (i.e. the same random variable). Both p and q might model these
percentages differently, based on different vocabulary usages for reach sending or receiving end.



11

Definition 2.2.1 The cross-entropy H(p, q) over distributions p and q is defined as:

H(p|q) = −
∑

x

p(x) log q(x) (2.4)

= − Ex∼p[log q(x)]. (2.5)

Within the communication theory context, this could be interpreted as the average amount of
information sent over a channel given an encoding that follows p or q, and given a message that
follows p or q. Considering this simple hypothetical example, one can imagine a 2x2 matrix
representing the four possible scenarios, and how it would be possible to pick the best encoding
for each pair of users of this communication channel.

For the generative modeling context, where we are often interested in approximating a
distribution q to the original p, the concept of cross-entropy gives us a way to measure of
distance between these two probability distributions.

Definition 2.2.2 The Kullback-Leibler (KL) Divergence DKL of p with respect to q is defined as:

DKL(p|q) = H(p|q) − H(p|p) (2.6)

= −
∑

x

p(x) log q(x) +
∑

x

p(x) log p(x) (2.7)

=
∑

x

p(x) log
p(x)
q(x)

. (2.8)

The KL divergence is an asymmetric measure that can be used to compute how two probability
distributions are different from each other. When trying to learn the probability distribution
underlying a certain dataset through maximum likelihood estimation, it is straightforward to see
that this is similar to starting from some arbitrary probability distribution and minimizing the KL
divergence between the two distributions.

2.3 CROSS-ENTROPY AS A LOSS FUNCTION

Cross-entropy is often used as a loss function in machine learning for problems such as binary
classification and multiclass or multinomial classification. Let us consider the binary case – for
GANs, as we shall see in the next chapter, a discriminator is trained to output the probability that
a sample is real, which falls under a binary classification problem. Consider now that a random
variable Y can have outcomes {y1, y2} when measured, with y1 and y2 being the probability for
each class of our binary classification problem. Calculating the cross-entropy for this case, we
have:

H(p|q) = −
∑
y∈Y

p(y) log q(y) (2.9)

= −p(y1) log q(y1) − p(y2) log q(y2). (2.10)

Considering that this is a binary classification problem, we know that y1 and y2 fall under a
Bernoulli distribution – that is, p(y1) = 1 − p(y2) and q(y1) = 1 − q(y2). Let us rename
p(y1) = y and q(y1) = ŷ. We then have:



12

H(p|q) = −y log ŷ − (1 − y) log(1 − ŷ) , (2.11)

which is the expression for the binary cross-entropy loss function that will be extensively used
throughout this work. We can interpret y as following the real class distribution p, and its value
is known a priori – that is, y ∈ {0, 1} since we know for sure the class it belongs to. We can then
understand ŷ as being our class prediction probability following our classifier’s current data
distribution q.

Starting from Chapter 3, we will use the natural language notation BCE(ŷ is y) for binary
cross entropy with expected labels y and output prediction ŷ. The reasoning for this is the fact
that it makes the mathematical notation easier to understand when applied in optimization
contexts. This notation is defined below only for further reference purposes:

BCE(ŷ is y) = −y log ŷ − (1 − y) log(1 − ŷ). (2.12)

When considering a batch size of m samples, the binary cross entropy is defined as the average
over the number of samples:

BCEm(ŷ is y) =
1
m

∑
(ŷ,y)

(
− y log ŷ − (1 − y) log(1 − ŷ)

)
. (2.13)

2.4 JENSEN-SHANNON DIVERGENCE

Another important similarity metric when comparing two probability distribution is the Jensen-
Shannon divergence. Unlike the Kullback-Leibler divergence, this is a symmetric measure. This
is achieved by introducing a third measure m into the calculation, which is the arithmetic mean
of two distributions p and q, and comparing them directly to m.

Definition 2.4.1 The Jensen-Shannon divergence DJS is defined as:

DJS(p|q) =
1
2

DKL(p|m) +
1
2

DKL(q |m), (2.14)

where m is a mixture such that m = (p + q)/2.



13

3 GENERATIVE ADVERSARIAL NETWORKS

The generative adversarial framework, in its basic formulation, consists of training
a generator G against a discriminator D through a minimax game [8]. Both G and D are
implemented as neural networks. Let us assume that G outputs data following a probability
distribution pg, and that the dataset which we are trying to learn has an underlying distribution
pdata. The generator takes as input the latent variables z, which follow a distribution pz, and
output x according to the current pg. The discriminator outputs a single value D(x), which
represents the probability that a sample x came from pdata instead of pg. The generator’s goal is
to learn pdata in order to fool the discriminator, which is concurrently trained to become better at
discerning real from fake samples. We can mathematically represent this game as the following
expression over a value function V(D,G) [8]:

min
G

max
D

V(D,G) (3.1)

where V(D,G) is defined as:

V(D,G) = Ex∼pdata [log D(x)] + Ez∼pz [log (1 − D(G(z)))]. (3.2)

One can immediately see that this is a sum of cross-entropies and, as well we will see in further
sections, is actually a lower bound to the Jensen-Shannon divergence measure between pdata and
pg (the actual bound value can be found in Chapter 5). This is also closely related to the reverse
KL divergence between the two distributions – defined as DKL(pg |pdata), remembering that this
measure is not symmetric. As we will see in Section 3.1, there is a high correlation between
these three different measures.

Considering the original formulation from a game-theoretical perspective, let us analyze this
function in two parts. Firstly, the discriminator will try to maximize D(x) when x comes from
the real dataset, and will also try to maximize the quantity 1 − D(G(z)) when x comes from the
latent variables z being fed through the generator. In order to do that, it has to decrease D(G(z)),
which is the probability of the discriminator guessing that a fake sample is real. On the other
hand, the generator will try to minimize the probability of the discriminator being right on real
samples (first term), and will also try to minimize 1 − D(G(z)) when a sample comes from the
generator. In order to do that, is has to increase D(G(z)), which is the probability of the
discriminator guessing that a fake sample is real. In practice, it has been found by the original
authors that, early in training, the discriminator is good enough to discern fake from real samples,
and we would have log(1 − D(G(z))) close to 0, which results in gradient saturation and makes
the training process harder. To avoid that, the authors suggest to abandon the relatively elegant
expression as seen in Equation 3.2, and to simply try to maximize D(G(z)) directly when
updating the generator.

3.1 COST FUNCTIONS

Before introducing the training algorithm itself, let us introduce and discuss the possible cost
functions for both generator and discriminator. For the original minimax game over the same



14

value function V(D,G), we can define the discriminator’s cost function J(D) over the model
parameters θ(D) and θ(G) as:

J(D)(θ(D), θ(G)) = − Ex∼pdata [log D(x)] − Ez∼pz [log (1 − D(G(z)))] (3.3)
= − BCEm(x is real) − BCEm(G(z) is not real). (3.4)

Notice that this is a sum of two binary cross-entropy functions, which are usually used when
training an image classifier with a single sigmoid output, and can be rewritten as such. Equation
3.4 is written in something resembling natural language and can be interpreted more easily – the
discriminator is clearly trying to discern between x and G(z) by maximizing the probability that
samples from the real dataset are detected as real, and also maximizing the probability that
generated samples are detected as fake.

To be more precise and in accordance with the BCE definition (Equation 2.12), we explicitly
define D(x) def

= (x is real) and (1 − D(G(z))) def
= (G(z) is not real).

One of the advantages of our natural language notation is that the probability 1 − D(G(z)) can be
inverted, and we can then also define D(G(z)) def

= (G(z) is real).

When considering the original minimax game, where the game is played over the same value
function, it follows that:

J(G) = −J(D). (3.5)

Since we are not sampling from pdata for the generator update, as we will see in Algorithm 1,
this effectively means that:

J(G) = Ez∼pz [log (1 − D(G(z)))] (3.6)
= BCEm(G(z) is not real). (3.7)

This could be interpreted as – when training the generator, minimize the probability that a fake
sample is classified as not real.

Some implementations have the discriminator loss normalized by 1
2 , since it is trained with a

minibatch containing real samples, and another batch of the same size containing fake samples,
as we will see in section 3.2. As previously mentioned, since we are trying to avoid gradient
saturation, it might be a good idea to use an heuristic approach and set a different cost function
for the generator. Maximizing D(G(z)) inside log(1 − D(G(z))) can be achieved by simply
writing it as log D(G(z)) and flipping (once again) the sign of J(G), resulting in our alternate cost
function for the generator, which is often called the non-saturating heuristic:

J(G)(θ(D), θ(G)) = − Ez∼pz [log D(G(z))] (3.8)
= − BCEm(G(z) is real). (3.9)

This could be interpreted as – when training the generator, maximize the probability that a fake
sample is detected as being real. Equation 3.9 directly gives us a way to train a non-saturating
GAN with standard binary cross-entropy functions on popular machine learning frameworks –
by flipping the expected label for a generated sample to real. This is explained in further detail
in Section 3.4.



15

Another cost function worth mentioning, considering the more general generative
modeling context, is the possibility of setting amaximum likelihoodmaximization cost function
for GANs, as seen in Goodfellow et al. [11], which can be shown to be the equivalent of
minimizing DKL(pdata | pg) [14] under the assumption that the discriminator is optimal. This is
accomplished by setting the generator cost as −Ez∼pz exp(σ−1(D(G(z)))) [11], where σ is the
logistic sigmoid function. In practice, and considering that the KL divergence is asymmetrical,
GANs as previously formulated in the minimax form seem to perform the minimization of
DKL(pg | pdata) instead [11], which is often called the reverse KL divergence. This minimization
also seems to be closely related to the minimization of the Jensen-Shannon divergence, as can
be seen in the empirical results presented in a paper by Nowozin et al. [15]. The minimax
formulation decreases the probability that the generator will produce a sample that has low
probability density assigned in the original data distribution, and has thus been theorized as an
explanation as to why GANs produce visual outputs with higher aesthetic qualities, as opposed
to maximum likelihood based methods, which will try to smooth the densities between modes,
producing non-sharp outputs.

Figure 3.1: Comparison between different loss functions by Goodfellow et al. [11].

Figure 3.1 shows the relationship between the generator’s loss function, J(G), and the output of
the discriminator when a fake sample is used as input. During early training, when the
discriminator is good at detecting fakes and D(G(z)) −→ 0, the generator has a loss and thus
gradient close to zero, which is the saturating scenario.

3.2 THE TRAINING ALGORITHM

Since we are training two neural networks at the same time, the training process is relatively less
straightforward than training standard models such as an image classifier. The original algorithm
alternates between k updates for the discriminator and one update to the generator. The algorithm
presented below is adapted from the original [8] and assumes this is equal to one, as suggested
by the authors:



16

Algorithm 1 GAN training algorithm.
1: for number of training iterations do
2: update the discriminator:
3: sample a minibatch of n real samples with labels 1 from pdata

4: sample a minibatch of n fake samples with labels 0 from pg by sampling noise from pz and
using it as input to the generator

5: calculate J(D)(θ(D), θ(G)) and update the discriminator
6: update the generator:
7: sample a minibatch of n fake samples with labels 0 from pg by sampling noise from pz and

using it as input to the generator

8: calculate J(G)(θ(D), θ(G)) and update the generator
9: end for

Generative Adversarial Networks are, however, known as being hard to train. Algorithm 1, when
implemented as simple neural networks on low-resolution datasets – such as the grayscale
Toronto Face Dataset – can only produce some basic results that are not particularly impressive,
even after fine tuning hyperparameters and using convolutional layers. This has been since then
greatly improved by different network architectures, loss functions based on new theoretical
backgrounds, and by a vast pool of knowledge gained from empirical research. Many of the
popular methods used for training GANs, commonly known as GAN hacks, were first published
in a 2016 paper by Radford et al. [13], together with a new architecture called Deep
Convolutional Generative Adversarial Networks (DCGAN), which is the main subject of the next
chapter and is also highly regarded as one of the first successful convolutional GANs.

3.3 IMPLEMENTATION CHALLENGES

As we have seen in Algorithm 1, not only are we training two neural networks, but the gradient
of the generator is dependent on the output D(G(z)) of the discriminator, regardless of the loss
function being used. Implementations found on the web are often poorly documented and do not
explicitly specify the cost function being used. There are many ways to implement Algorithm
1 with different deep learning libraries. We will mention two approaches to it – pure Keras,
regardless of the backend being used; and TensorFlow 2.0 with gradient manipulations.

3.4 KERAS

Keras provides an easy, albeit hacky way to implement the non-saturating GAN. The GAN model,
consisting of a generator and discriminator connected in a sequential order, can be defined as
follows:

Algorithm 2 Keras GAN model definition.
1: Define the sequential discriminator model D, compile it by calling

D.compile(loss=’binary_crossentropy’, ...)
2: Define the sequential generator model G and do not compile it
3: Define a third sequential model, GAN
4: Add G to GAN by calling GAN.add(G)
5: Set D.trainable = False
6: Add D to GAN by calling GAN.add(D)
7: Compile GAN by calling GAN.compile(loss=’binary_crossentropy’, ...)



17

Line 5 in Algorithm 2 is a hack that allows both discriminator and generator to be updated
independently, as seen in the discriminator loop (Algorithm 1, Line 2) and generator loop
(Algorithm 1, Line 6). We then add both D and G to a third model, GAN. The previously used
hack enables us to update the generator G by training a third model, GAN, which will only affect
G’s weights. The whole model can be thought as of a single sequential model, where both G and
D are updated according to the gradients calculated considering the weights of each separate
model but a single loss function, which is calculated as a function of the output of D.

The training algorithm can be then roughly defined as follows:

Algorithm 3 Keras non-saturating GAN training loop.
1: for batch do
2: Sample x (n real samples) with labels y = 1 (real)
3: Sample x∗ (n fake samples) with labels y∗ = 0 (fake)
4: Stack (2) and (3) in the same arrays as stack(x, x∗) and stack(y, y∗)
5: Train D by calling D.train_on_batch(stack(x, x∗), stack(y, y∗))
6: Generate latent variables z with labels yg = 1 (real)
7: Train G indirectly by calling GAN.train_on_batch(z, yg)
8: end for

Line 6 in Algorithm 3 is what indirectly defines the cost function for the generator as seen in Eq.
3.8, that is, the non-saturating version of J(G) = −J(D). The trick that allows this cost function to
be defined is setting the labels yg as 1 (real) for the generated outputs (as seen in Eq. 3.9), while
feeding the latent variables z to our third model (GAN). Lines involving the generation of latent
variables/noise were omitted, but implementations often use NumPy and its function
numpy.random.randn(·) to sample from a standard normal distribution.

3.5 TENSORFLOW 2.0

Both TensorFlow 2.0 and PyTorch provide the ability to directly access the gradient tape and
easily customize it. These gradients can be manipulated separately when there are multiple
neural network models defined, which is especially useful when training GANs. Keras was
also recently integrated into TensorFlow, and newer versions of it can be accessed only as a
TensorFlow sub-module. What this means in practice is – it is possible to use Keras to define our
network models in a simple and concise manner, while also being able to manipulate details such
as custom gradients. This will become more relevant starting from Chapter 5, where we will use
direct gradient operations.

Instead of defining GAN as a sequential model with D following G as seen in the Keras
implementation, we can elegantly define GAN as a class inheriting from tf.keras.Model
and override its train_step function, with D and G being contained within the GAN class.
Algorithm 4 shows a snippet of the overridden train_step function when using TensorFlow
2.0 with D and Gmodels defined by tf.keras, where G_opt and D_opt are any Keras-defined
optimizer such as tf.keras.optimizers.Adam and self.D_loss is a user-defined
loss function:



18

Algorithm 4 TensorFlow 2.0 GAN train_step override snippet. (Python)
1: z = tf.random.normal(shape=(batch_size, self.latent_dim))
2: G_z = self.G(z)
3: stacked_x = tf.concat([x, G_z], axis=0)
4: stacked_y = tf.concat([tf.ones((batch_size, 1)),

tf.zeros((batch_size, 1))], axis=0)
5: with tf.GradientTape() as tape:
6: stacked_D = self.D(stacked_x)
7: loss_D = self.D_loss(stacked_y, stacked_D)
8: grad = tape.gradient(loss_D, self.D.trainable_weights)
9: self.D_opt.apply_gradients(zip(grad, self.D.trainable_weights))
10: z = tf.random.normal(shape=(batch_size, self.latent_dim))
11: y = tf.ones((batch_size, 1))
12: with tf.GradientTape() as tape:
13: D_G_z = self.D(self.G(z))
14: loss_G = self.G_loss(y, D_G_z))
15: grad = tape.gradient(loss_G, self.G.trainable_weights)
16: self.G_opt.apply_gradients(zip(grad, self.G.trainable_weights))

Note that, on Line 12, we will still have the gradients defined on the gradient tape as if we had
only one sequential generator-discriminator network, but we still update only G’s weights. To
define the saturating loss function for the generator, we can either define a custom loss function
G_loss directly – or use the standard binary cross-entropy function without flipping the
expected labels (Line 11), and then multiplying the generator’s loss by −1 (Line 14).

3.6 SATURATING GRADIENT COMPARISON

Figure 3.2 shows an attempt at analyzing the suggested gradient issues caused by using the
original minimax/saturating loss function, using a subset of the CelebA dataset for 5 epochs,
with each epoch having 943 steps. On the graph, the saturating loss results for the generator
are multiplied by −1 for an easier comparison, since the saturating loss function leads to a
negative number (as seen in Equation 3.7). The architecture used in this experiment was a simple
convolutional architecture without label smoothing or batch normalization, following similar
conditions similar to the original paper.

It is easy to notice that, early in training, the non-saturating G loss leads to a stronger
gradient. Althoughmoremodern practices such as adding label noise seem to decrease such issues,
the non-saturating loss function became standard practice due to its simplicity to implement,
higher stability and faster convergence during training. One important fact to mention is that, in
this architecture, images were normalized to the range [0, 1], the generator is similar to a mirrored
discriminator, and the generator’s output has a sigmoid activation function. For the purpose of
comparisons with other reports found in the literature it is worth mentioning that, when using the
tanh activation function (used in architectures such as DCGAN), the generator usually produces
a higher loss value.

3.7 LABEL CONDITIONING

One way to considerably improve the results produced by the generator is training the network
with class labels. When trained this way, the network is often able to produce less ambiguous
objects, a phenomenon called class-leakage by some authors. The improvements seem to be very



19

Figure 3.2: Comparison between different saturating and non-saturating functions on a convolutional GAN.

consistent between a large number of GAN architectures, to such an extent that this has become a
separate sub-field of its own, where comparing class conditioned GANs to unsupervised GANs
is avoided or explicitly mentioned. Due to this, it is important to state that the focus of this work
are unsupervised GANs, although conditional GANs are briefly mentioned in later chapters.

3.8 LATENT SPACE INTERPOLATION

A remarkable property of Generative Adversarial Networks is the fact that they are able to learn
latent space mappings in a way such that arithmetic can be done over the latent vectors z. Figure
3.3 shows a linear interpolation done between vector z i and z j . More sophisticated arithmetic
can also be made with the latent vectors, such as addition and subtraction. A common example of
this is adding a latent vector of a person without sunglasses to another vector, which is the latent
vector of a person with sunglasses, resulting in a new third sample containing a new person with
sunglasses, with this third person looking roughly like an interpolation between the initial two.

Figure 3.3: GAN-generated samples from a linear interpolation between latent vectors zi and zj , which are used as
inputs to the network. Source: Donahue et al. [16], adapted.



20

4 DEEP CONVOLUTIONAL GAN

The Deep Convolutional Generative Adversarial Network (DCGAN) [13] was one of
the first major breakthroughs after the publication of the original paper proposing the adversarial
training framework, and remains as one of the most cited papers in this newly created field. It
has a relatively simple architecture (Figure 4.1), and proposed some guidelines that might help
when training the DCGAN or similar convolutional models. This includes replacing pooling
layers with strided convolutions for the discriminator, and fractionally-strided convolutions for
the generator; using batch normalization [17], using the ReLU activation function [18] for the
generator and the Leaky ReLU activation function [18] for the discriminator with a slope of 0.2.
The paper also recommends using the Adam optimizer [19] and provides hyperparameters – a
learning rate of 0.0002 and a β1 momentum term of 0.5.

Figure 4.1: DCGAN generator architecture as seen in the 2016 paper [13].

4.1 CONVOLUTIONAL AND TRANSPOSE CONVOLUTIONAL LAYERS

Due to its success in practical applications, convolutional layers became one of the most important
components in deep learning and computer vision in recent years. The research related to artificial
neural networks based on how visual cortices in animals work date to the early 1980s [20], and
they are perhaps the most notorious example of biologically-inspired concepts being successful
in artificial intelligence. In the context of deep learning, convolutional layers actually apply an
operation called cross-correlation. This layer has multiple filters or kernels, each usually having a
square dimensionality. The kernel’s weights are applied to the input using dot product, resulting
in a single value. The kernel is then moved by a certain stride value, which usually has the same
value for all dimensions, and this is applied until the entire input is covered. After this is done,
an activation function and a pooling layer can be applied. By reducing dimensionality, pooling
layers can reduce the impact of minor input changes such as rotations and shifts. A kernel can
learn its weights by backpropagation, much like simpler neural networks containing only dense
layers. In fact, a convolutional layer can be rewritten as a dense layer with shared weights.

Generative Adversarial Networks often require transforming lower-dimensional noise
to higher dimensional data. For instance, a simple image generation application may use a latent
vector of size 128, and output an image with size 64×64×3. The way this can be accomplished is



21

by consecutive applications of upsampling layers. A rudimentary way of doing that is by having
an upsampling layer that doubles the input size by performing a nearest-neighbour or bilinear
interpolation. A more robust way of performing upsampling is by applying the convolution
operation with fractional stride f , such as f = 1/2. This operation is sometimes called
transpose convolution, or deconvolution, although the latter has its own different mathematical
definition in the context of signal processing and some authors therefore argue that is technically
incorrect. The way a stride with factor f ≤ 1 can be achieved is by filling the input with zeroes
and performing a convolution [21] with f = 1. On deep learning libraries, this operation is
implemented through a layer that is typically called Conv2DTranspose.

Figure 4.2: Visualization of a transpose convolution being applied to a 2 × 2 input (blue squares), resulting in a
4 × 4 output (green squares), by applying a standard convolution with zero padding (white squares). To perform a
transpose convolution with a higher stride (for instance, 2), zero padding is also added in between the blue squares.
Source: A guide to convolution arithmetic for deep learning by Dumoulin et al. [21].

4.2 THE CHECKERBOARD EFFECT

Successful convolutional neural network architectures used for image classification – such as
Inception [22] and ResNet [23] – often have odd-numbered kernel sizes, such as 3 × 3 or 5 × 5.
Emulating this way of building convolutional architectures to networks which use transpose
convolutional layers may result in the production of image containing checkerboard patterns,
as seen in Figure 4.3. Images containing this type of visual artifact may be less aesthetically
pleasing when the pattern is clearly visible, but this kind of pattern also has implications to
computer forensics. Even if the pattern is not easily perceptible to the human eye, some novel
neural networks are able to distinguish between real and generated images by spotting artifacts
such as the checkerboard pattern, or other patterns generated by convolutional networks.

A simple way of avoiding artifacts is to use convolutions where the kernel size is
divisible by the stride. This apply to both the generator and discriminator – for the backward pass,
the convolutions on the discriminator might cause the gradient to also produce the checkerboard
pattern [24]. Another approach would be using standard upsampling instead of transpose
convolutions. In this case, using nearest-neighbour is reported to provide better results than
bilinear interpolation [24].



22

4.3 BATCH NORMALIZATION

A common guideline for training deep convolutional GANs is the use of batch normalization [17]
in both generator and discriminator, except in the last layer of the generator and in the first layer
of the discriminator [11]. Batch normalization improves the optimization process by subtracting
the mean of a certain feature map x and then dividing it by its standard deviation, calculated
over a minibatch. This may lead to unwanted side effects, particularly when using small batch
sizes [11]. An alternative called virtual batch normalization [25] has been developed, but recent
architectures seem to default to the standard batch normalization.

Figure 4.3: Checkerboard pattern comparison with different network architectures. Images on the first line were
generated by a network with transpose convolutions in the last two layers and standard upsampling in all other layers;
images on the second line were generated by a network with transpose convolutions on the last layers and standard
upsampling on all other layers; images on the third line were generated by a network with only standard upsampling
layers. The standard upsampling layers perform nearest-neighbour interpolation (effectively copying single pixels
into squares containing the same pixels). Source: Odena et al. [24].



23

5 WASSERSTEIN GAN

Even though Deep Convolutional GANs proved to be very successful at the task of
generating images, its architecture needed to be sometimes carefully crafted – together with
choosing the proper optimizer and its hyperparameters – in order to assure some probability of
near-convergence that would result in high quality visual samples. The standard GAN training
algorithm itself and its loss function seemed to be a bit arbitrary and lacked a strong theoretical
background. The original minimax formulation for the loss function, as previously mentioned in
Chapter 3, is something similar to the Jensen-Shannon divergence [15], which can be seen in
empirical results. In fact, to be more precise, the cost J(D) (Equation 3.3) for the discriminator
can to shown to be a lower bound of 2DJS(pdata |pg) − 2 log 2 [26]. Using this measure as a loss
function often leads to unstable training, and the loss itself does not correlate with the sample
quality – for instance, it is possible to have the same loss for the discriminator in case where the
sample quality is considered good, and another where there is a mode collapse with non-sense
samples [26]. The non-saturating cost function for the generator (Equation 3.8) has even less
theoretical foundations, and the conclusion about it are reported to be the same as the saturating
loss [26]. The Wasserstein GAN (WGAN) tries to solve these problems – its loss metric is
reported to be correlated with sample quality and is a measure of the generator’s convergence,
while it also stabilizes the training process. A Wasserstein GAN is a GAN that implements the
WGAN Algorithm, and not an architecture by itself.

5.1 WASSERSTEIN METRICS

A few key concepts are necessary in order to understand the WGAN Algorithm and its theoretical
background. Many mathematical definitions in this section are simplified and have details omitted.
The original paper proposing the WGAN [26] has some proofs regarding certain statements,
while details for other definitions can be found in mathematical textbooks.

Definition 5.1.1 The infimum of a subset S of a partially ordered set T , denoted inf S, is the
greatest element t ∈ T such that t ≤ s, for all s ∈ S. If S is finite and real valued, inf S is the
minimum element of S.

Definition 5.1.2 The supremum of a subset S of a partially ordered set T , denoted sup S, is the
smallest element t ∈ T such that t ≥ s, for all s ∈ S. If S is finite and real valued, inf S is the
maximum element of S.

The Wasserstein distance is another distance metric (i.e. symmetric measure) defined over two
probability measures. It is named after the Russian mathematician Leonid Wasserstein and forms
the basis of the theory behind the WGAN Algorithm.

Definition 5.1.3 Given two probability measures µ, ν and a metric d(x, y) over a given metric
space, the pth Wasserstein distance Wp(µ, ν) is defined as:

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

E(x,y)∼γ[d(x, y)p]
) (1/p)

, (5.1)

where Γ(µ, ν) denotes the set of all joint distributions γ(x, y) whose marginals are µ and ν,
respectively.



24

If we have p = 1, this distance measure is called Wasserstein-1 or Earth Mover’s Distance
(EMD). Considering also our distributions pdata, pg, and a metric d(x, y), we can define the
Wasserstein-1 distance which is used in the WGAN Algorithm.

Definition 5.1.4 Given two probability measures pdata, pg and a metric d(x, y) = | |x − y | | over a
given metric space, the Wasserstein-1 or Earth Mover’s distance W(pdata, pg) is defined as:

W(Pdata, Pg) = inf
γ∈Γ(pdata,pg)

E(x,y)∼γ[ | |x − y | | ] , (5.2)

where Γ(pdata, pg) denotes the set of all joint distributions γ(x, y) whose marginals are pdata and
pg, respectively.

The denomination Earth Mover’s Distance is a term that comes from transportation theory and
the optimal transport problem. We can think of µ being a pile of earth that needs to be moved to
the pile ν. A transport plan is then defined as γ(x, y), which gives the amount of mass to be
moved from x to y, and has an associated cost c(x, y). If the cost is simply the distance between
the two points, meaning that c(x, y) = d(x, y) = | |x − y | |, we fall under the exact definition of the
EM distance.

In the context of GANs, we can think of this distance as being the cost of the optimal plan for
transporting pdata to pg. Under certain assumptions, the Wasserstein-1 distance is continuous
everywhere and differentiable almost everywhere [26], while DKL and DJS are not. This is
theorized to produce better and more coherent gradients for the generator.

5.2 KANTOROVICH-RUBINSTEIN DUALITY

Calculating the Wasserstein-1 distance by the infimum definition is considered intractable. It is
possible, however, to reformulate the Wasserstein-1 distance as the solution of a maximization
problem over 1-Lipschitz functions.

Definition 5.2.1 (K-Lipschitz function) Given two metric spaces (X, dx) and (Y, dy), a function
f : X → Y is called K-Lipschitz if there is a constant K ≥ 0 such that:

dy( f (x1), f (x2))

dx(x1, x2)
≤ K, (5.3)

for all x1, x2 ∈ X such that x1 , x2.

When taking a supremum of a set S considering the restrictions of Equation 5.3, the resulting
expression is often referred to in publications, without any explanations whatsoever, as:

sup
| | f | |L≤K

S. (5.4)

The reformulation from a minimization to a maximization problem is given by a result called the
Kantorovich-Rubinstein duality. Its derivation can be found in mathematical textbooks.

Definition 5.2.2 (Kantorovich-Rubinstein duality) Given that f is 1-Lipschitz, Equation 5.2 can
be reformulated as:

W(Pdata, Pg) = sup
| | f | |L≤1

Ex∼pdata[ f (x)] − Ex∼pg[ f (x)]. (5.5)



25

From the duality, it is possible to rewrite Equation 5.5 for a K-Lipschitz function f as [26]:

K ·W(Pdata, Pg) = sup
| | f | |L≤K

Ex∼pdata[ f (x)] − Ex∼pg[ f (x)]. (5.6)

This supremum is also considered intractable. Let us now consider the family of K-Lipschitz
functions { fw} parametrized by w, which can be thought of as the weights of a neural network
when approximating a function fw through it. With this neural network setup, we could consider
trying to solve the following problem:

max
w ∈ Ω

Ex∼pdata[ fw(x)] − Ex∼pg[ fw(x)]. (5.7)

Considering a neural network implementation with weights w, where we have the strong
assumption that w is lying in a compact space Ω (meaning it is closed and bounded), if we can
imagine that our estimator would calculate W(Pdata, Pg) up to a multiplicative constant K , where
K would be hidden within the network and of little concern to our objectives. Under this setup,
fw is a neural network that is called the critic.
If the compact space Ω assumption is held, then we would calculate the Wasserstein-1 distance
by a factor K . Since fw is a neural network, it is differentiable and we could calculate the
gradient through the estimation fw to also a factor K , which we could use to train our
generator-critic setup. This assumption over every Ω is naively achieved in the original paper
[26] by restricting the network’s weights by a small factor, such as wi ∈ [−0.01, 0.01], for every
wi ∈ Ω. Regarding the metric spaces X and Y , this method enforces that the function is
K-Lipschitz for any metric space [27]. The paper [26] also has an extensive proof that the
gradient of the Wasserstein-1 can be calculated through fw.

Given a fixed generator, the more we train our critic fw, the better our approximation of the
Wasserstein-1 distance between pdata and pg will be, giving us better gradients for the generator.
This is why we usually train the critic more often than the generator, unlike what is usually done
for the standard GAN Algorithm. The critic can be trained to optimality, can’t saturate and
converges to a linear function. When the critic is trained to optimality, a useful consequence is
that mode collapse can’t happen under this algorithm [26].

Figure 5.1: A comparison between the gradients of a minimax/saturating GAN and a WGAN when trying to learn
two Gaussian distributions. The gradient of the saturating GAN reaches zero when the WGAN still provides good
gradients. Source: Wasserstein GAN [26], adapted.



26

5.3 THE WGAN ALGORITHM

Given the propositions from section 5.2, we can now introduce the WGAN Algorithm. A
downside for this algorithm is the fact that one can’t use high learning rates or momentum based
optimizers such Adam with β1 > 0 anymore. The proposed solution is to use RMSProp with
lower learning rates instead. The original suggested values are α = 0.00005, c = 0.01 and k = 5.

Algorithm 5WGAN Training Algorithm.
1: while generator has not converged do
2: for t = 1 to k do
3: sample {x(i)}m

i=1 ∼ pdata

4: sample {z(i)}m
i=1 ∼ pz

5: gradc ← ∇
[ 1
m

∑m
i=1 fw(x(i)) − 1

m

∑m
i=1 fw(G(z(i)))

]
6: w ← w + α · RMSProp(w, gradc)
7: w ← clip(w,−c, c)
8: end for
9: sample {z(i)}m

i=1 ∼ pz
10: gradg ← −∇

[ 1
m

∑m
i=1 fw(G(z(i)))

]
11: wg ← wg − α · RMSProp(wg, gradg)
12: end while

5.4 WGAN IMPLEMENTATION

Keras starts to show its limitations when implementing the WGAN Algorithm. For weight
clipping, it is possible to set a kernel_constraint parameter that clips the weights when
adding layers for the discriminator. Since we are estimating fw with a neural network, the critic
should have a linear activation instead of a sigmoid activation that restricts it to the interval [0, 1].
Notice that now we are not directly using binary cross-entropy with log probabilities anymore,
but we are instead using the arithmetic mean of the scores fw.

While it is possible to set a custom loss function according to Lines 5 and 10 with
Keras, we will focus on the TensorFlow 2.0 implementation. The reason for this is that further
extensions of the WGAN Algorithm will require not only custom loss functions, but also direct
gradient manipulation. Given the modified discriminator model, the implementation is very
similar to Algorithm 4, although we would instead have a loop for training the discriminator/critic
with k steps. The last modification would be the custom loss function for both generator and
critic. A possible definition for the loss functions is shown in Algorithm 6.

Algorithm 6WGAN TensorFlow 2.0 loss functions.
1: def critic_loss(x_real, x_fake):
2: return -(tf.reduce_mean(x_real) - tf.reduce_mean(x_fake))
3: def generator_loss(x_fake):
4: return -tf.reduce_mean(x_fake)

5.5 GRADIENT PENALTY

Even though the WGAN paper introduced a new theoretical framework for new research to be
based upon, the actual results from applying the standard WGAN Algorithm with weight clipping



27

to enforce the Lipschitz constraint can be underwhelming. For instances, the samples produced
are of lower quality than the ones produced by DCGAN, while also having considerably slower
training. After the publication of the original paper, many variations on the DCGAN have been
proposed, such as the Wasserstein GAN - Gradient Penalty Algorithm (WGAN-GP).

Figure 5.2: Comparison between different methods of enforcing the Lipschitz constrain for the critic on the Swiss
Roll dataset. The gradients for lower numbered layers tend to explode, or sometimes vanish (with c = 0.1), while
WGAN-GP stays normalized around 1. The figure also shows the distribution of the weights in the critic for each
constraint method. Source: Improved Training of Wasserstein GANs [28].

The WGAN-GP Algorithm proposes a different way to enforce the Lipschitz constraint
– given the fact that a differentiable function fw is 1-Lipschitz if and only if it has gradients at
most 1 everywhere [28], the constraint is enforced by restricting the gradient norm of the critic.
In order to do that, we sample x̂ ∼ px̂ , where px̂ is a new distribution defined by an interpolation
along straight lines of pdata and pg. The justification for this is that enforcing norm at most 1
everywhere would be intractable [28], and empirically enforcing it along straight lines provides
good results. Using the notation from the original paper [28], where the sign for the generator
and the critic is swapped, our new loss function then becomes:

L = Ex∼pg[ fw(x)] − Ex∼pdata[ fw(x)] + λ · Ex∼px̂ [(| |∇ fw(x̂)| |2 − 1)2] , (5.8)

where λ is called the penalty coefficient and has a default suggested value of 10. This form of
normalization, however, cannot be used together with batch normalization for the critic, since we
are penalizing the loss on a per-input basis instead of the entire batch. One can either avoid using
batch normalization altogether on the critic or using alternatives such as layer normalization [29].
Another advantage of the WGAN-GP method is the fact that it is possible to implement it with
the Adam optimizer with momentum and a higher learning rate. Algorithm 7 shows the modified
WGAN Algorithm with gradient penalty. Unlike previous architectures seen in this work, the
gradient penalty algorithm is able to properly train very deep neural networks for both generator
and discriminator, such as the 101-layer ResNet [23], a network architecture initially developed
for image classification tasks.



28

Algorithm 7WGAN-GP Algorithm with batch size m.
1: while generator has not converged do
2: for t = 1 to k do
3: for i = 1 to m do
4: sample x ∼ pdata

5: sample z ∼ pz
6: sample ε ∼ U(0, 1) from a uniform distribution
7: xg ← G(z)
8: x̂ ← ε x + (1 − ε)xg
9: L(i) ← fw(xg) − fw(x) + λ · Ex∼px̂ [(| |∇ fw(x̂)| |2 − 1)2]
10: end for
11: w ← w + α · Adam(w,∇ 1

m

∑m
i=1 L(i))

12: end for
13: sample {z(i)}m

i=1 ∼ pz
14: wg ← wg − α · Adam(wg,∇

[ 1
m

∑m
i=1 fw(G(z(i)))

]
)

15: end while

5.6 WGAN-GP IMPLEMENTATION

The WGAN-GP Algorithm requires more sophisticated features from a deep learning library,
since the loss L(i) is a function of a gradient for every i, which we then use to calculate another
gradient, ∇ 1

m
∑m

i=1 L(i). Once more, this can be done by manipulating the gradient tape in
TensorFlow 2.0.

For the generator, there are no changes in the overridden function train_step,
other than using the Adam optimizer instead of RMSProp. The critic part is also relatively
straightforward – we initially calculate L0 with the standard critic_loss function, setting
Lbatch

0 = critic_loss(x_real, x_fake), and then calculate the final loss by setting
Lbatch = Lbatch

0 + λ · gradient_penalty(m, x_real, x_fake), where x_real and
x_ f ake are the images in batch instead of the inner loop on Algorithm 7. This gradient penalty
function is defined in Algorithm 8. The expression on Line 3 is equivalent to ε x + (1 − ε)xg,
but has less multiplications. The critic/"discriminator" function fw is defined here as a call to
self.D.

Algorithm 8 Gradient penalty function. (Python)
1: gradient_penalty(self, m, x_real, x_fake):
2: e = tf.random.uniform([batch_size, 1, 1, 1], 0.0, 1.0)
3: x_hat = x_real + e * (x_fake - x_real)
4: with tf.GradientTape() as tape:
5: tape.watch(x_hat)
6: f = self.D(x_hat, training=True)
7: grad = tape.gradient(f, [x_hat])[0]
8: L2 = tf.sqrt(tf.reduce_sum(tf.square(grad), axis=[1, 2, 3]))
9: return tf.reduce_mean(L2 - 1.0) ** 2



29

6 SPECTRAL NORMALIZATION GAN

Spectral Normalization is one of the most successful regularization methods proposed to
help improving and stabilizing the training of Generative Adversarial Networks, and is built upon
the Wasserstein GAN theoretical groundwork. Unlike the WGAN, the Spectral Normalization
GAN (SNGAN) [30] does not need to calculate the extra gradient ∇ fw(x̂), and enables the usage
of much higher learning rates. This contrasts heavily with both WGAN and WGAN-GP – the
former requiring very slow training rates, and the latter being computationally heavy with the
extra gradient requirement, which requires a forward pass and the actual gradient calculation.
Published in 2018, its authors claimed that it was the first architecture capable of producing
decent ImageNet [31] samples with only a single generator and discriminator. Extensions to the
SNGAN involving the use of discriminator sampling [32] seem to remain the state of the art for
smaller architectures. The general idea of such regularization methods is to enforce regularity
conditions on the derivative of fw, This particular method is based on earlier work from Yoshida
and Miyato [33], and requires us to first introduce some definitions related to algebra and spectral
theory.

6.1 MATRIX NORMS

The following are some definitions that will enable us to define the spectral norm.

Definition 6.1.1 Given a linear transformation represented by the n × n matrix A, if there is a
vector v ∈ Rn and a scalar λ such that Av = λv, then λ is called the eigenvalue of A for a vector
v, which is called an eigenvector.

Definition 6.1.2 Given a square matrix A, the singular values σi(A) of A are given by the square
roots of the non-negative eigenvalues of A∗A, where A∗ denotes the conjugate transpose of A.

We can now define the spectral norm, which is a matrix norm induced by the L2 norm.

Definition 6.1.3 Given a matrix A, the spectral norm of A, denoted | |A| |2 or σmax(A), is the
maximum singular value of A.

| |A| |2 = max
i
σi(A) =

√
λmax(A∗A) (6.1)

= max
v:v,0

| |Av | |2
| |v | |2

. (6.2)

| |A| |2 is alternatively denoted as σ(A). Equation 6.2 can be directly derived from Definition
6.1.1 by taking the L2 norm.

6.2 SPECTRAL NORMALIZATION AND LIPSCHITZ NORM

The spectral normalization method controls the Lipschitz constant by constraining the spectral
norm for each layer [30], in a manner that is considerably more computationally efficient than the
gradient penalty method. We can now define the Lipschitz norm.

Definition 6.2.1 (Lipschitz norm) Consider a weight matrix W and a layer with linear activation
function g : hin → hout , such that g(h) = Wh. The Lipschitz norm | |g | |Lip is defined as:



30

| |g | |Lip = sup
h
σ(∇g(h)) , (6.3)

where the gradient with respect to the input can be rewritten as ∇g(h) = W .

By rewriting the gradient, we have that | |g | |Lip = suph σ(∇g(h)) = suph σ(W). Since it is not a
function of h, the last expression can also be rewritten, and we have that | |g | |Lip = σ(W).

If the Lipschitz norm for every activation function al for every layer l of the critic is
equal to 1 (which is the case for ReLU and Leaky ReLU [30]), then by doing some algebra [30]
with the layer notation for neural networks we can find an upper bound for the Lipschitz norm of
the critic function f , resulting in the following bound:

| | f | |Lip ≤ σ(W1) σ(W2) ... σ(W L). (6.4)

We can now define the spectral normalization operation. The weight matrix W is normalized by:

WSN(W) =
W

σ(W)
. (6.5)

By doing some algebra on Equations 6.4 and 6.5, it is possible to conclude that σ(WSN(W)) = 1,
which give us an upper bound for our critic: | | f | |Lip ≤ 1. In practice, this form of normalization
is computationally lightweight and performs better than both weight clipping and gradient
penalty.

6.3 IMPLEMENTATION

Since we are simply normalizing the weight matrix of the discriminator, spectral normalization
only requires manipulating a weight matrix, which in practice can be done by setting a custom
layer that manipulates those weights. Calculating σ(W) can be computationally expensive when
using naïve methods, but it can be approximated by algorithms such as the power iteration
method [33]. This is a numerical method and is out of the scope of this work, but the authors
provide an implementation of the power iteration method and the Python definition of a spectral
normalization layer which applies such method. More recently, this method has been included in
popular deep learning libraries, such as the torch.nn.utils.spectral_norm operation
on PyTorch and the tfa.layers.SpectralNormalization layer on TensorFlow.

6.4 HINGE LOSS

An alternative loss function, called hinge loss, was reported by Miyato et al. [30] to perform
well with the SNGAN – in fact, it outperformed all other losses under the settings of the paper.
Its concept is borrowed from the maximum margin classifier literature and the Support Vector
Machine (SVM), where a classifier is trained to maximize the geometric margin between classes.
For Generative Adversarial Networks, it is also possible train the discriminator to maximize the
margin between (implicit) classes by using the hinge loss function. This is an oversimplification
and is described in this way only for intuitive purposes, but theoretical details can be found in
the Geometric GAN paper by Lim et al. [34]. The hinge loss for the generator remains the
non-saturating loss (Equation 3.8), and the discriminator hinge loss for a discriminator with
linear output is defined as:

J(D)(θ(D), θ(G)) = − Ex∼pdata [min(0,−1 + D(x))] − Ez∼pz [min(0,−1 − D(G(z)))]. (6.6)



31

7 QUANTITATIVE ANALYSIS

Unlike other learning tasks such as training an image classifier, where there are available
correct labels and the loss function is calculated by some measure of the deviation of the output
and the expected labels, generative models such as GANs and VAEs do not inherently have a loss
function that is correlated with the output’s subjective quality. As we have seen in Chapter 5,
the Wasserstein GAN partly solves this problem, but its loss function is exclusive to this kind of
architecture and therefore cannot be used to compare the WGAN to other types of generative
models. Since this area of research is focused on improving the quality of the samples, a way of
measuring how different generative models compare to each other is vital to the advancement of
the field. Many different measures have been proposed in the last few years, such as the Inception
Score (IS) [25], the Fréchet Inception Distance (FID) [35], the Geometry Score [36], the Sliced
Wasserstein Distance (SWD) [37], the Fréchet Joint Distance, Multi-scale structural similarity
(MS-SSIM) [38], precision and recall methods and many others. Of these, only the IS and FID
seem to have stood the test of time, at least in the context of image generation. As of this writing,
research papers still usually only include both IS and FID measures when reporting results, and
are for this reason the subject of this chapter.

Other than subjective quality, generative models should ideally have a very varied
outputs. Poorly trained GANs, for instance, may suffer from a problem called mode collapse,
where the generator outputs images very similar to each other that are then classified as real by
the discriminator, thus making the generator "win" the minimax game in a manner that produces
poorly performing generators. An optimal generator measure should therefore combine both
sample quality and sample variety.

7.1 INCEPTION SCORE

The Inception Score [25] is calculated using the outputs of the Inception-v3 network [22], which
is an image classifier trained over the ImageNet [31] dataset, outputting probabilities for 1000
classes. Its concept is relatively simple – for a given input x and class label y:

1. We would like the outputs p(y |x) of the Inception-v3 network to have low entropy
(i.e. high class probability, meaning that the network is sure that there is an object from a certain
class in the input).

2. We would like the marginal p(y) =
∫

p(y |x = G(z)) dz to have high entropy for
every y (i.e. low class probability for every y, meaning that our generator won’t be biased to
output images from a certain class with high probability).

Both of these requirements can be satisfied by the Inception Distance metric. The
authors exponentiate the result to make the results easier to compare, which is the standard
practice when calculating the IS in recent research papers.

Definition 8.1.1 (Inception Score) For an Inception-v3 network trained over the ImageNet
dataset with 1000 classes and outputs following a distribution p, the Inception Score IS for a
generator G with distribution pg is defined as:

IS(G) = exp
(
Ex∼pg DKL( p(y |x) | p(y) )

)
. (7.1)



32

Higher IS measures therefore mean that the distance between p(y |x) and the marginal p(y) is
high, which coherently satisfies requirements 1 and 2.

Implementing the Inception Score is very straightforward – deep learning libraries
such as Keras already have the Inception-v3 network built-in, which can be used to process the
inputs. The actual score can be then calculated by using Equation 2.7. A modified version of
this equation is commonly used in practice to avoid numerical instability when calculating the
logarithm of probabilities close to zero. Although we have p(y |x) directly from the output of the
Inception-v3 network, we must find a way to calculate p(y). This is usually done by creating an
estimator p̂(y) over N samples [39]. We can define the estimator as:

p̂(y) =
1
N

N∑
i=1

p(y |x(i)) , (7.2)

and the actual expression for the Inception Score which is used in practice is defined as:

IS(G) = exp

(
1
N

N∑
i=1

DKL( p(y |x(i)) | p̂(y) )

)
. (7.3)

The Inception Score has received much criticism since its initial publication. The main
criticism concerns using the classification score of an ImageNet-trained network to images of
a generator which was trained on other datasets. Regardless of that, this score seems reliable
enough to still be used. Papers related to deep generative modeling often still publish IS measures
even when the generator is trained using other datasets. Another important fact to mention is
that the IS was found to be correlated with actual scores from human annotators [25]. From its
definition, we can also conclude that a higher IS score represents a better score.

7.2 FRÉCHET INCEPTION DISTANCE

The Fréchet Inception Distance is arguably the current research community standard generative
modeling metric. It also uses the Inception classifier for the metric calculation, but with a
relatively more sophisticated approach. Unlike the IS, the FID uses the statistics of the real
dataset which was used to train the generative model, although the Inception network itself is
usually pre-trained on ImageNet. The introduction of artifacts and noise to input images can
heavily alter the resulting FID, something which often does not happen with the IS.

The Fréchet Inception Distance has a definition based on a measure called the Fréchet
or Wasserstein-2 distance. More specifically, we use the Fréchet distance definition for two
multivariate Gaussian distributions, and we assume that the pooling activation results of the last
layer prior to the class probability outputs of the Inception-v3 network follow a multivariate
Gaussian distribution. The reasons for this assumption and more details about this method can
be found in the original paper [35]. This last pooling layers has dimension 2048 and can be
interpreted as extracted features from the input.

Definition 8.2.1 (Fréchet Inception Distance for two multivariate Gaussians) Given two
multivariate Gaussian distributions N(µdata, Σdata) and N(µg, Σg), the Fréchet Inception
Distance is defined as:

d2 = | |µdata − µg | |
2
2 + tr(Σdata + Σg − 2 ·

√
Σdata × Σg ). (7.4)



33

To make this definition more clear, since we are considering multivariate distributions: Σ is a
covariance or auto-covariance matrix, which is a square matrix that is calculated in a pair-wise
manner for a given input vector; the trace tr of a square matrix is defined as the sum of the
elements in the main diagonal of this matrix; and the notation

√
Σdata × Σg refers to the matrix

square root operation, which can be calculated by many different methods which are
implemented in linear algebra packages – for instance, on SciPy this can be accessed by calling
scipy.linalg.sqrtm.

In practice, when implementing the FID a small value may be added to the diagonal of
the covariance matrices when calculating the matrix square root, in order to avoid numerical
problems. Calculating the square root matrix also may produce imaginary components, which
are then discarded and only the real part is kept. The FID was also found to correlate with human
judgment [35]. Unlike the IS, the FID is not a score but a distance metric. The original paper
[35] transforms the IS into a distance in order to compare them, but the important to have in mind
is that a lower FID represents a better result.

7.3 LIMITATIONS OF INCEPTION METRICS

The IS and FID measures that are published in papers practically always use an Inception v3
network pre-trained on the ImageNet dataset – more specifically, this a dataset that contain many
real-world photos which are divided in 1000 classes. For generative models, a popular dataset
for benchmarking is the CIFAR10 dataset, which contain smaller (32 × 32) real-world photos
which are subdivided in only 10 classes (such as cat and ship). Since both datasets are related
to real-world objects, there is a considerable class overlap, but training a generative model on
CIFAR10 and then calculating the IS/FID through an ImageNet-based Inception network may
produce measures that are not ideal. A detailed discussion about this topic (for the Inception
Score) can be found on a paper by Barratt et al. [39].

Calculating the Inception Score based on samples from a generator that has been trained
on a dataset that is radically different from ImageNet (such as CelebA, which contains only
portraits of celebrities) tends to produce lower scores when compared to CIFAR10 scores. This
most likely happens due to the fact that only one class has a high marginal probability. Regardless
of that, the IS has been often used in research papers with datasets such as CelebA and the LSUN
Bedroom dataset (containing only photos of bedrooms). Chapter 9 includes a practical analysis
of the IS calculated from CelebA-trained generators.

The Fréchet Inception Distance has considerably less problems when used with
generators trained on datasets other than ImageNet. Since the statistics of an internal layer of the
Inception network are used (instead of the output class probabilities in the IS), together with the
fact that in this case we use both generated and real samples to calculate the measure, the Fréchet
distance is arguably a better metric for comparing generative models. Even if the inputs belong
to a distribution that radically differs from ImageNet, one can assume that the Inception network
learns useful internal representations that are able to extract useful features which can then by
used to calculate the metric.



34

8 LARGE-SCALE GENERATIVE MODELING

The research mentioned in the previous chapters of this work is concerned with the
problem of optimizing the generator to produce higher quality samples, while usually having
the assumption that the architecture consists of a single generator and discriminator. Even if
GANs are considered to have unstable and slow training, it is possible to train relatively recent
architectures on consumer-grade GPUs in a few hours when using low-resolution datasets, such as
CelebA downsampled to 64×64. However, in recent years there has been increased interest in the
possibility of developing larger architectures which can better use computational resources, which
often involve a higher amount of VRAM and parallelism between multiple GPUs. While larger
scale architectures have been tremendously successful and are still the state-of-the-art in terms of
output quality, this should be considered as a sub-field of deep generative modeling research. As
we will see, larger scale architectures still receive the benefits of more solid research involving
the study of simpler models. Since it is practically impossible to train such architectures with
consumer-grade hardware, these architectures are only mentioned in this chapter for completion,
and are omitted from experimental runs in Chapter 9.

8.1 PROGRESSIVE GROWING GAN

The Progressive Growing GAN (sometimes referred to as ProGAN), published in late 2017 by
a team at NVIDIA [40], is the first architecture that was able to produce shockingly realistic
1024×1024 images. Since all previous available datasets had a relatively low resolution, this paper
also introduced the new CelebA-HQ dataset. The architecture consists of a mirrored generator
and discriminator. The network starts with low-resolution images, with higher-resolution layers
being smoothly added during training. By doing this, training times are considerably reduced,
which is of extreme importance when considering high resolution datasets. Figure 8.1 shows an
overview of the training process and a few generated samples.

Figure 8.1: Progressive GAN architecture overview – layers are added to both generator and discriminator during
training. Generated samples on the right are downsampled from the 1024 × 1024 originals. Source: NVIDIA [40].

Instead of suddenly being added during training, new layers are added by a linearly growing
factor α, increasing from 0 to 1, while at the same time the previous set of layers receive a factor
of 1 − α.



35

The paper shows that this method can be applied to different GAN losses, and presents results
with both WGAN-GP and the Least-Squares GAN (LSGAN), the latter not being previously
mentioned in this work due to its underwhelming results, while also being less stable when used
in the progressive growing framework [40].

Applying the Progressive Growing GAN architecture to lower-resolution datasets also
provides us with interesting results. Figure 8.2 shows a comparison between generated samples
coming from networks trained on the CelebA-HQ dataset (first row) and samples from networks
trained on the CelebA (second row). The samples in Figure 8.2 (d) come from a converged
ProGAN setup, which still contain many artifacts and contrasts heavily with the clean and
high-resolution samples generated by the same architecture as shown in Fig. 8.2 (a), when trained
using CelebA-HQ. The authors state that the CelebA dataset itself contains many artifacts (such
as aliasing, compression and blur) [40], which trained generators seem to reproduce. This result
is particularly interesting because it clearly shows that even successful large-scale architectures
are unable to provide good quality samples from popular low-resolution datasets that were used
by the research community for many years.

Figure 8.2: Comparison between generated samples from different datasets and architectures – (a) ProGAN trained
on the CelebA-HQ dataset (1024 × 1024 images) and samples from (b) WGAN-GP trained on CelebA and (c) (d)
ProGAN trained on CelebA (downsampled to 128 × 128 from 178 × 218). Source: Karras et al. [40], adapted.

8.2 BIG GAN

The BigGAN, published in late 2018 by a team at DeepMind [41], improves previous state-of-
the-art results by using a larger architecture with larger batch sizes. Its architecture in based



36

on the Self Attention GAN (SAGAN) [42], and also uses Spectral Normalization (Chapter 6).
It was trained on a Google TPU v3 Pod, which has considerably more computing power than
the previously used 8 × Tesla V100 for the ProGAN, and is an empirical study focused on
experimenting with extremely large architectures in practice. By the time of its publication, it
had improved both of the previous state-of-the-art IS and FID (held by ProGAN). One interesting
finding by the researchers was the fact that increasing the batch size by a factor of 8 increased
the previous state-of-the-art IS by 46% (note that, as previously mentioned in Chapter 3, this
comparison can be considered rather unfair since ProGAN had an unsupervised architecture).
Using progressive growing in the BigGAN was deemed by its authors as unnecessary. The paper
provides training details and challenges, but seems to be more focused on scaling problems rather
than providing new paradigms. Each experiment for the BigGAN is reported to consume up to
4915 kWh. More recently, a new and improved implementation called BigGAN-PyTorch was
released, which allegedly can be run on 4 to 8 GPUs.

8.3 STYLE GAN

The StyleGAN, initially published in late 2018, is an improvement on the ProGAN architecture
developed by the same team at NVIDIA that had initially introduced the progressive growing
framework. The first version of the StyleGAN had initially delivered state-of-the-art results.
StyleGAN v2, release in late 2019, has improved these results even further, currently having the
best published IS and FID scores for unsupervised learning.

StyleGAN uses the ProGAN as the baseline, and borrows concepts from the style
transferring literature in order to improve it. Instead of having the latent codes z ∈ Z directly as
inputs to the generator, the StyleGAN uses a non-linear mapping f : Z →W, where the outputs
w ∈ W are produced by running z through a 8-layer MLP. The architecture is still progressive
growing, but we now have have two convolutions for every resolution level – with the exception
of the first level, which has a learned constant as input instead of a convolution. Before the
second convolution is applied, the input goes through Adaptive Instance Normalization (AdaIN)
[43]. This enables the addition of styles on arbitrary levels of detail – copying styles from lower
resolutions can lead to the change of higher level details (such hair style and eyeglasses), while
copying styles from higher resolutions can lead to the change of lower level details (mostly the
color scheme and minor lightning details). As Figure 8.3 shows, the inputs w first go through an
affine mapping A, which can be implemented as a fully connected network, and outputs values ys
and yb (scaling and bias factors, respectively). The AdaIN operation first normalizes the input x,
with the following operation being performed:

AdaIN(x, ys, yb) = ys
x − µ(x)

σ(x)
+ yb. (8.1)

Unlike batch normalization, µ(x) and σ(x) are calculated for each channel and sample. Also
shown in Figure 8.3 is the addition of random noise, which is fed through another learned affine
mapping B. This allows the generation of images with slightly different minor variations, such as
positioning of the exact placement of hairs and freckles, a feature which can be better understood
by watching the videos released by NVIDIA.



37

Figure 8.3: The traditional generator (a) refers to the standard Progressive Growing GAN generator, while (b) shows
the novel StyleGAN generator. The affine maps A and B are implemented as neural networks, and the 4 × 4 × 512
constant, which takes the place of z ∈ Z in the original ProGAN, can be learned through backpropagation. Source:
NVIDIA [44].

The architecture was tested with both WGAN-GP and nonsaturating losses, the latter found to be
better for longer training times when used together with R1 regularization [45]. Considering that
this architecture does not use z directly as input, the researchers also found a trade-off between
image variety and quality called the truncation trick. Areas with low density in the training data
can be difficult to learn, and by truncating values inW it is possible to ignore such rarer data
points and produce images that are higher in visual quality. Figure 8.5 shows an example of a
generated sample containing artifacts related to areas with low probability in the training dataset.

StyleGAN v2, which is not discussed in detail here, further improves the previous
architecture by removing normalization artifacts which could be seen in generated samples
from its previous iteration. The NVIDIA team also compared and proposed a new StyleGAN
architecture without progressive growing, which outperformed the previous formulations and
currently hold the best FID reported by the research community. Figure 8.4 shows a few generated
samples from this architecture.



38

Figure 8.4: Samples generated by StyleGAN v2. The network is able to produce samples that are very varied (they
show different higher level details such as gender, hair length, skin color, presence or absence of earrings and
sunglasses), while still being able to produce minor details such as age marks on the skin. Source: random samples
from https://thispersondoesnotexist.com/, downsampled from the 1024 × 1024 originals.

Figure 8.5: Left image (generated by StyleGAN v2) – an example of visual artifacts related to points of low
probability in the training dataset, which can be avoided by the truncation trick; right image (a real photo) –
sample from the training data used to train this network. A possible explanation for this image is the fact that the
training dataset, called Flickr-Faces-HQ (FFHQ), has only a few images containing people with uncommon makeup
applications, which is not enough for the generator to learn coherent representations. Source: the generated image is
a random sample from https://thispersondoesnotexist.com/.

https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/


39

9 EXPERIMENTAL STUDIES

This chapter introduces the results achieved by running experiments with multiple
GAN architectures, which are then quantified by the metrics introduced in Chapter 7. Before
discussing the results from the generative networks, some details about the implementation
and variability of the Inception Score (IS) and Fréchet Inception Distance (FID) are discussed.
The architectures analyzed in this section are the DCGAN, a Wasserstein GAN with Gradient
Penalty, and a ResNet-based Spectral Normalization GAN. The original weight clipping version
of the WGAN was left out of the experimental studies due to its very slow training process and
underwhelming results, but the theoretical guarantees and advantages are still present in the
gradient penalty version. In this chapter we will also discuss the correlation between network
losses and our chosen quantitative metrics. All experiments were ran on a NVIDIA GTX 1060
GPU with 6GB VRAM, and the training process took between 20 and 30 hours for each model.

9.1 INCEPTION METRICS IN PRACTICE

Other than the issues that are considered limitations by design of both IS and FID measures (see
Chapter 7, Section 7.3), many other issues are found in practice. For instance, different weights
of the pre-trained Inception v3 network (used for both IS and FID) may result in different scores.
This is particularly problematic when using implementations made with different deep learning
libraries. The original IS implementation, made by OpenAI, requires the outdated TensorFlow
1.x, which is dependent on many older libraries. For perhaps this reason, some researchers use a
PyTorch IS implementation, but this has been reported to produce considerably different IS scores
when compared to the original. For this work, both TensorFlow 1.x and PyTorch implementations
were compared, and considerably different scores were indeed observed, although this is only a
minor issue for the FID measure. A huge variability in this score was also found when calculating
the IS with different numbers of samples. Table 9.1 shows IS reference results for both CelebA
and CIFAR10 with different numbers of samples.

Inception Score
CelebA CIFAR10

Library N = 100 1,000 10,000 N = 10,000 50,000
TensorFlow 2.87 ± 0.55 4.22 ± 0.30 4.48 ± 0.11 10.99 ± 0.32 11.23 ± 0.09
PyTorch 2.86 ± 0.58 3.93 ± 0.23 4.04 ± 0.21 9.67 ± 0.14 9.67 ± 0.14

Table 9.1: Inception Score measures for subsets of the CelebA dataset containing N = {100, 1000, 10000} images
and the CIFAR10 training dataset with N = {10000, 50000} images. All experiments were done with nsplits = 10
and shuffled inputs. The TensorFlow scores were obtained with the original OpenAI implementation with a custom
wrapper, while the PyTorch scores were obtained with a custom implementation.

The Fréchet Inception Distance was found to be less variable across implementations
with different libraries (Table 9.2), but it was noted that there is still a huge variability in final
scores which is also related to the chosen number of samples for the calculation of the measure.



40

Fréchet Inception Distance
DCGAN (epoch 25)←→ CelebA

Library N = 100 1,000 5,000 50,000
TensorFlow 203.96 138.81 115.23 110.82
PyTorch 189.94 138.79 115.60 111.11

Table 9.2: Fréchet Inception Distance measures between a trained DCGAN at epoch 25 and the reference training
dataset for subsets of N = {100, 1000, 5000, 50000} images. All experiments were done with nsplits = 10. The
TensorFlow measures were obtained with the original implementation by Heusel et al. [35], while the PyTorch
measures were obtained with an implementation by M. Seitzer [46].

An additional practical problem related to computing Inception-based metrics is worth
mentioning – before feeding the images in the Inception v3 network, we must consider that it
expects inputs of dimension 299 × 299. The TensorFlow pre-trained Inception v3 network has
a resize layer, by default, before the input layer, which applies bilinear filtering. For PyTorch
implementations, a custom resize function is also applied with bilinear filtering. This is not an
issue for smaller architectures, but it is interesting to notice that samples produced by large-scale
architectures have some information discarded when calculating the FID.

For further experiments in this section, the OpenAI TensorFlow implementation is
used for calculating the IS, and the PyTorch implementation is used for calculating the FID
due to its considerably lower running times. All measurements in the next sections are made
with nsplits = 10 and N = 1000. This number of samples was chosen due to its low required
computing times while being somewhat close to convergence, as can be seen in Tables 9.1 and 9.2.
Calculating the IS and FID measures for each epoch (1000 generated samples) took approximately
30 seconds for each method - the PyTorch FID implementation being considerably more efficient
than the TensorFlow IS implementation, even thought it requires processing twice the number of
samples plus additional matrix operations. The running time for the FID calculation increases
considerably with a higher number of samples.

9.2 DCGAN

For the first experiment, a DCGAN with architecture similar to Figure 4.1 is trained on the
CelebA dataset, containing 202,599 portraits of celebrities. It is important to note that there is no
standard DCGAN, and the original paper [13] proposes many different configurations regarding
batch normalization and activation functions for both inner layers and the generator’s output.
For this experiment, LeakyReLU was used in both discriminator and generator with a slope
of 0.2. The generator uses transpose convolutional layers instead of standard upsampling, and
the generator’s last convolution has a tanh activation with images normalized to [−1, 1]. The
chosen optimizer was Adam with learning rate α = 0.0002 and exponential decay rates β1 = 0.5,
β2 = 0.999, with a batch size of 32. For this experiment, the generator outputs 64 × 64 images
and the discriminator has 64 × 64 images as input, with the real ones being resized to this size
from the original 178 × 218 by applying bilinear filtering.

Figure 9.2 shows the FID progression throughout 26 epochs for the DCGAN. The
lowest measured FID occurs at epoch 13, with a measure of 111.92. The IS (Figure 9.1) also
was calculated for each epoch, but it doesn’t seem to correlate with the subjective image quality
when used with a CelebA generator, while the FID is clearly correlated to it by the author’s
subjective judgement. In fact, the calculated correlation coefficient between IS and FID is only
r = −0.0877 (Pearson), indicating almost no correlation between the two quantitative methods.
For the DCGAN, the discriminator loss (defined here and in further experiments as the average



41

loss since epoch 0) also showed only a very weak correlation (r = 0.2278) between discriminator
loss and the FID measure (which, in this case, is the only reliable image quality measure).

Figure 9.1: IS measure progression for a DCGAN
trained on CelebA for 26 epochs.

Figure 9.2: FID measure progression for a DCGAN
trained on CelebA for 26 epochs.

This architecture was trained for 26 epochs, with the best results being achieved at
epoch 13. The training was stopped after noticing that was diverging from the previous best
results, although it is possible that the network could eventually improve with further training.

Figure 9.3 shows samples generated after the first epoch (row 1), the worst epoch (row
2, epoch 8) and the best epoch (rows 3 and 4). The DCGAN already starts to produce discernible
results after the first epoch. The worst epoch contains the highest amount of artifacts, which
indicates that the FID can correctly assign bad scores for images containing them. The first two
images (left to right) from the last row shows an indication of minor mode collapse, where the
generator learns to produce similar images to fool the discriminator, which may be related to the
very small chosen batch size.

Figure 9.3: Samples generated by the DCGAN – First row: epoch 1 (FID = 137.11); Second row: epoch 8 (FID =
153.74); Third and fourth rows: epoch 13 (FID = 111.92).



42

9.3 WGAN-GP

For the second experiment a WGAN using gradient penalty was trained, with an architecture
similar to the DCGAN from Section 9.2. Changes include adding batch normalization to and
standard ReLU for the generator, and using layer normalization on the discriminator/critic. The
generator’s output is still activated by a tanh convolution. The chosen optimizer is still Adam,
this time with a more aggressive learning rate of α = 0.0004, and exponential decay rates β1 = 0,
β2 = 0.9, the last two terms being suggested in the original paper [28]. The chosen batch size
was 128, and the used gradient penalty coefficient was λ = 10 (see Algorithm 7). Another change
is that we now update the discriminator/critic for ncritic = 5 times for each update to the generator,
since for Wasserstein GANs there are benefits in training the critic more frequently (see Chapter
5 for the motivation behind this reasoning).

Figure 9.4: IS measure progression for a WGAN with
gradient penalty trained on CelebA for 15 epochs.

Figure 9.5: FID measure progression for a WGAN with
gradient penalty trained on CelebA for 15 epochs.

The measured Inception Scores (Figure 9.4) for this setup are once again not correlated
to subjective image quality (in fact, there is a moderate inverse correlation), while the FID still
remains an accurate measure of subjective quality. It is quite clear from the results shown in
Figure 9.5 that Wasserstein GANs have much more stable training. However, this comes at a cost,
with the training of the WGAN under these parameters taking twice as much time for each epoch
as the DCGAN presented in the Section 9.2, despite having a higher learning rate parameter.

Although the WGAN-GP was trained only for 15 epochs, it is likely that the image
quality would further improve with more training. Another interesting result is the correlation of
r = −0.9112 between the FID measure and the discriminator/critic’s loss. Figures 9.6 and 9.7
show the critic loss progression and its high correlation with FID measures, respectively.

Figure 9.8 shows the samples generated after the first epoch (row 1, which is also the
worst epoch), epoch 2 (row 2, which is the second worst epoch) and the best epoch (rows 3 and 4,
epoch 14).



43

Figure 9.6: WGAN-GP discriminator/critic loss during
training. The critic loss slowly starts converging into a
linear function, as seen in Figure 5.1 from Chapter 5,
which was reported in the original paper.

Figure 9.7: Scatter plot showing the correlation between
increasing discriminator/critic loss and improving (low-
ering) FID measures (r = −0.9112).

Figure 9.8: Samples generated by the WGAN-GP – First row: epoch 1 (FID = 202.91); Second row: epoch 2 (FID =
156.53); Third and fourth rows: epoch 14 (FID = 134.50). Note: this experiment was the first experiment in this
work by order of execution, and contained a left-over crop transform before applying bilinear filtering to resize the
image to 64 × 64. This slightly alters the dataset and provides different looking pictures, but this should not lead to
changes in the conclusions coming from the experiments contained in this section. This might have worsened the
low correlation between IS and FID measures in this section but, as we can see the previous section, the DCGAN
already shows a situation with low correlation even without cropping.

9.4 SNGAN

For the last three experiments, an SNGAN was trained with a ResNet-based architecture for both
generator and discriminator. For more details about this architecture and residual blocks, see He
et al. [23]. The architecture used here is, however, much shallower than the ResNet used as image
classifiers, although it was reported that it is possible to train 101-layer ResNet architectures with
the generative adversarial training framework, the first one achieving this being the WGAN-GP
[28]. The chosen optimizer was again Adam, this time with α = 0.0002 and exponential decay
rates β1 = 0.5, β2 = 0.9, which is a configuration slightly different than the one reported in the
original paper [30], and a batch size of 64. The hinge loss was used, as described in Chapter 6



44

(Equation 6.6). The definition of the ResNet architecture used for this experiment can be found
in the appendix of the original SNGAN paper [30], where it was used to train a generator on the
CIFAR10 dataset, although a few modifications were done for it to support inputs of dimensions
larger than 32 × 32.

Figure 9.9: IS measure progression for a ResNet-based
SNGAN trained on CelebA for 54 epochs.

Figure 9.10: FID measure progression for a ResNet-
based SNGAN trained on CelebA for 54 epochs.

Surprisingly, the Inception Score is positively correlated with image quality for CelebA
samples generated by the SNGAN. This might be explained by the fact that the SNGAN is able
to produce samples realistic enough for the Inception v3 network to output classifications with
high probabilities, while also producing images that are varied and clearly distinguishable from
each other, even early in training. Regardless of that, the previous experiments already show that
the IS is an unreliable measure for datasets that do not have a high overlap with ImageNet (see
Chapter 7, Section 7.3). Even more surprising is the fact that, for this setup, the FID measure
starts to show its limitations. The FID for the SNGAN reaches 119.59 already at epoch 5, and
remains around this value up until the training process was stopped, at epoch 54 (Figure 9.10).
Meanwhile, the IS keeps increasing throughout the training process (Figure 9.9), and correlates
with the author’s perceived subjective quality. The IS measures, however, are less reliable during
later stages in training as a way to quantify image quality, and are better used as a measure of
training progress – contrasting with the FID, which is less reliable earlier in training.

For this experiment, the IS is a better predictor of image quality, despite being applied
to a dataset (CelebA) which contains only portraits, which would correlate to only a couple of the
possible 1000 output classes of the ImageNet-based Inception v3 network used to calculate the
final score. Other than that, there is also a somewhat strong correlation (r = −0.8872) between
the generator’s loss and the IS.

Figure 9.11 shows the image quality progression during training. After the first epoch
(first row), the ResNet generator is only able to produce noise. This slowly improves after the
second epoch (row 2), and epoch 5 (row 3) we already have samples of relative decent quality –
this is where the FID stops making sense as a measure of image quality and training progress. As
mentioned above, the IS keeps increasing after epoch 5 (IS = 1.72520, FID = 119.59), while the
FID keeps gravitating around 119.59. Row 4 shows samples from the best epoch as reported
by the Inception Score (IS = 2.56406, epoch 34), and rows 5 and 6 show samples from the best
epoch as reported by the Fréchet Inception Distance (FID = 104.84, epoch 45).

Despite achieving an impressive level of photorealism, the ResNet-based SNGAN still
suffers from artifacts which are related to points of low probability in the training dataset. A few



45

samples generated with items such as sunglasses and hats are blurry and lack visual coherence.
Some other issues related to symmetry and spatial coherence also appear for a minority of
generated images, as can be seen in Figure 9.11.

Figure 9.11: CelebA samples generated by the ResNet-based SNGAN with hinge loss – First row: epoch 1; Second
row: epoch 2; Third row: epoch 5; Fourth row: epoch 34; Fifth and sixth rows: epoch 45.

9.5 SNGAN ON FFHQ

As described in Chapter 8, the CelebA dataset is somewhat limited, containing issues such as
compression artifacts and blur, while the images also consist of exclusively young or middle-aged
adults. The Flickr-Faces-HQ (FFHQ), initially made for training the StyleGAN v2, contains
69000 images with a resolution of 1024 × 1024 of a more varied array of people, including
children and older adults with more frequency. Some of the datapoints, however, may present
challenges to training, such as those containing uncommon makeup patterns and/or costumes.
There seems to be a higher variability in the person’s angle in the portrait, and some photos
are imperfectly cropped versions of photos involving more than one people, which may present
additional challenges, particularly when considering CelebA’s total of 202599 photos against
69000 photos in FFHQ. This section provides an analysis of the ResNet-based SNGAN on a
smaller 128 × 128 version of the dataset. The architecture and parameters are exactly the same
as in the SNGAN from Section 9.4, outputting 64 × 64 images, while the FID statistics are
calculated against the 128 × 128 dataset. To the best of the author’s knowledge, this analysis
remains unpublished.

Figures 9.12 and 9.13 show the progression during training for the IS and FID measures,
respectively, during a total of 103 epochs. FFHQ has less images per epoch and thus lower
convergence speed, and for this reason was trained for about twice the total numbers of epochs
when compared to the results from the previous section.



46

For the FFHQ dataset, however, the FID was found to be a more stable indicator of
progress and also outperforms the IS in terms of rating the subjective quality of samples and
the amount of variety found in those samples. The generator loss is still somewhat strongly
correlated with the IS at r = −0.875922.

Figure 9.12: IS measure progression for a ResNet-based
SNGAN trained on FFHQ for 103 epochs.

Figure 9.13: FID measure progression for a ResNet-
based SNGAN trained on FFHQ for 103 epochs.

Figure 9.14 shows FFHQ generated samples in a progressive order, where each row of
images comes from a different epoch. The best reported IS is reported at epoch 46, while the
lowest FID is reported at epoch 99. The second-best IS happens at epoch 103, the last epoch for
this experiment, where also the third-best FID is reported, indicating that training was stopped
too early and that the ResNet-based SNGAN could still improve with further training.

Figure 9.14: Samples generated by the ResNet-based SNGAN with hinge loss trained on FFHQ – First row: epoch
11; Second row: epoch 46 (best IS); Third row: epoch 70; Fourth row: epoch 91; Fifth row: epoch 99 (best FID);
Sixth row: epoch 103 (last epoch, third-best FID and second-best IS).



47

9.6 SNGAN ON CIFAR10

The last experiment consists of an analysis of the SNGAN on the CIFAR10 dataset, which still
seems to be the de facto standard for measuring GAN performance and consists of 60000 images
with resolution 32 × 32, divided in 10 classes. Since this work is focused on generative modeling
with unsupervised learning, the class information is discarded. While it is interesting to see
how advanced models such as the ResNet-based SNGAN are able to learn simpler datasets, this
experiment will enable us to see how IS and FID measures based on greatly different datasets
compare to each other. As mentioned before, there is significant overlap between CIFAR10’s
classes and ImageNet classes, the latter being used in the Inception v3 network, which is used to
calculate both IS and FID. For this reason, both scores are expected to be very accurate measures
of image quality and diversity under most circumstances.

The architecture used in this experiment is a slightly modified version of the ResNet-
based SNGAN used in previous sections, made to support inputs of resolution 32 × 32. The
network was trained for 353 epochs, and the best FID was measured at epoch 232 at FID =
49.5358, while the best IS measure was achieved at epoch 270 at IS = 7.3134. This test achieved
peak correlation between IS and FID at r = 0.933, with both of them also being correlated with
perceived subjective quality. For this experiment, the generator loss was not correlated to the IS
or FID. Figures 9.15 and 9.16 show the progression during training.

Figure 9.15: IS measure progression for a ResNet-based
SNGAN trained on CIFAR10 for 353 epochs.

Figure 9.16: FID measure progression for a ResNet-
based SNGAN trained on CIFAR10 for 353 epochs.

Figures 9.18 and 9.19 show generated samples with the best reported IS and FID
measures, respectively. Although the images are low in resolution, this dataset can be considered
very challenging since the pictures have very varied scenarios, which becomes an even bigger
issue when training the network in an unsupervised manner.

As mentioned before, the mentioned scores were calculated for N = 1, 000 samples.
One can immediately notice that the scores based on datasets with considerable ImageNet overlap
are far different than the score achieved on datasets consisting of only portraits. This shows that
both quantitative measures are only useful when comparing different architectures over the same
dataset. Some published papers also fail to explicitly mention N , and a very high variability in
calculated measures was noticed – for instance, the achieved FID in the last epoch was 65.51
for N = 1, 000 samples, 30.48 for N = 5, 000 samples and 20.51 for N = 50, 000 samples.
The original published result, for reference, was 21.7 for N = 5, 000 samples. This leads us
to conclude that both IS and FID must be used with relative care in regards to the generator’s
training dataset, number of samples and the current stage in the training process. Overall, the



48

Fréchet Inception Distance is a reliable metric for purposes of monitoring the training progress
during research, but should be used with care in publications.

Figure 9.17: Real images from the original CIFAR10 training dataset.

Figure 9.18: Samples generated by the ResNet-based SNGAN with hinge loss trained on CIFAR10. This is the best
achieved score according to the IS measure (epoch 270, IS = 7.3134).

Figure 9.19: Samples generated by the ResNet-based SNGAN with hinge loss trained on CIFAR10. This is the best
achieved score according to the FID measure (epoch 232, FID = 49.5358).



49

10 CONCLUSION

The introduction of deep neural networks to the field of generative modeling has
significantly improved it. In just a few years, Generative Adversarial Networks progressed from
being able to generate black-and-white digits to being able to produce high resolution portraits
that look real enough to fool human beings. The level of achieved realism is so high that it makes
many people wonder about what could be achieved in a few more decades, especially in regards
to the generation of videos and its use for purposes of identity theft. Although known useful
practical applications are still limited, research in the field of deep generative models show that,
given enough computing power, it is possible for computers to learn probability distributions
of extremely high complexity. More than that, they are surprisingly able to output coherent
and previously unseen data instead of simply memorizing a dataset, which can be seen as a
component of machine creativity and a step towards general artificial intelligence.

Since its initial publication in 2014, GANs have received numerous improvements, such
as different loss functions and many ways of normalizing layers, both of which are components
that can stabilize and improve the training process. The publication of the Progressive Growing
GAN in late 2017 was a major breakthrough for the field. Its relatively simple concept of slowly
increasing the image’s resolution was highly successful in practice, and started a trend towards
large scale architectures. Even though an absurd amount of electrical energy was consumed to
train these large networks, it was proven for the first time that learning such a complex dataset
was possible.

Although spectral normalization was highly successful when applied to small archi-
tectures, being computationally lightweight and enabling the networks to use more aggressive
optimizer parameters while at the same time producing better converged results, there is still
almost no published articles concerning the use of spectral normalization in large scale architec-
tures for unsupervised learning. A further improvement on the StyleGAN v2 for learning with
an order of magnitude less samples was recently published by NVIDIA [47] and contains the
use of newer regularization methods (such as R1 regularization), but it is unclear as to why the
researchers avoided the spectral norm, meaning that further research could be published in this
area.

In the last few years, many metrics have been proposed for quantifying the subjective
quality perceived in images created by generative models, of which the two most popular ones –
the Inception Score (IS) and the Fréchet Inception Distance (FID) – were analyzed in practice.
The IS proved to be a less reliable measure, especially when used to compare samples generated
from networks which were trained on datasets that do not have a high overlap with the ImageNet
dataset, such as CelebA. Despite this, an edge case was found in which the IS was highly
correlated with image quality on CelebA, particularly during early training, while at the same
time the FID was unable to discern between blurry samples from early training and high-quality
samples from later epochs. One can conclude that the FID is less dependent on the dataset used
for the generator, and is a better measure for image quality and image diversity in most situations.
It is, however, an imperfect measure, as demonstrated in Chapter 9, and more research is clearly
required regarding quantitative metrics that are architecture-agnostic.



50

REFERENCES

[1] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and
Wenzhe Shi. Photo-realistic single image super-resolution using a generative adversarial
network, 2017.

[2] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denoising with generative adversarial
network based noise modeling. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3155–3164, 2018.

[3] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative
image inpainting with contextual attention, 2018.

[4] Veit Sandfort, KeYan, Perry J. Pickhardt, and RonaldM. Summers. Data augmentation using
generative adversarial networks (cyclegan) to improve generalizability in ct segmentation
tasks. Scientific Reports, 9(1):16884, Nov 2019.

[5] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee. Generative adversarial text to image synthesis, 2016.

[6] Ting-ChunWang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
High-resolution image synthesis and semantic manipulation with conditional gans, 2018.

[7] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and
Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders, 2016.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25, pages
1097–1105. Curran Associates, Inc., 2012.

[10] Brendan J. Frey. Graphical Models for Machine Learning and Digital Communication.
MIT Press, Cambridge, MA, USA, 1998.

[11] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks, 2017.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

[13] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks, 2016.

[14] Ian J. Goodfellow. On distinguishability criteria for estimating generative models, 2015.

[15] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization, 2016.

[16] Chris Donahue, Zachary C. Lipton, Akshay Balsubramani, and Julian McAuley. Semanti-
cally decomposing the latent spaces of generative adversarial networks, 2018.



51

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015.

[18] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network, 2015.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[20] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition. In Shun-ichi Amari and Michael A.
Arbib, editors, Competition and Cooperation in Neural Nets, pages 267–285, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg.

[21] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning,
2018.

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and ZbigniewWojna.
Rethinking the inception architecture for computer vision, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[24] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 2016.

[25] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans, 2016.

[26] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[27] Jonas Adler and Sebastian Lunz. Banach wasserstein gan, 2019.

[28] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans, 2017.

[29] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[30] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks, 2018.

[31] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[32] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan
Cao, and Yoshua Bengio. Your gan is secretly an energy-based model and you should use
discriminator driven latent sampling, 2020.

[33] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the
generalizability of deep learning, 2017.

[34] Jae Hyun Lim and Jong Chul Ye. Geometric gan, 2017.



52

[35] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium, 2018.

[36] Valentin Khrulkov and Ivan Oseledets. Geometry score: A method for comparing generative
adversarial networks, 2018.

[37] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and
its application to texture mixing. In Alfred M. Bruckstein, Bart M. ter Haar Romeny,
Alexander M. Bronstein, and Michael M. Bronstein, editors, Scale Space and Variational
Methods in Computer Vision, pages 435–446, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[38] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans, 2017.

[39] Shane Barratt and Rishi Sharma. A note on the inception score, 2018.

[40] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans
for improved quality, stability, and variation, 2018.

[41] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high
fidelity natural image synthesis, 2019.

[42] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention
generative adversarial networks, 2019.

[43] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization, 2017.

[44] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks, 2019.

[45] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans
do actually converge?, 2018.

[46] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/
mseitzer/pytorch-fid, August 2020. Version 0.1.1.

[47] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data, 2020.

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

	Introduction
	Generative and Discriminative Models
	Approaches to Generative Modeling

	Information Theory
	Information and Entropy
	Cross-entropy and Kullback-Leibler Divergence
	Cross-entropy as a loss function
	Jensen-Shannon divergence

	Generative Adversarial Networks
	Cost functions
	The Training Algorithm
	Implementation challenges
	Keras
	TensorFlow 2.0
	Saturating gradient comparison
	Label Conditioning
	Latent Space Interpolation

	Deep Convolutional GAN
	Convolutional and transpose convolutional layers
	The checkerboard effect
	Batch Normalization

	Wasserstein GAN
	Wasserstein metrics
	Kantorovich-Rubinstein duality
	The WGAN Algorithm
	WGAN Implementation
	Gradient Penalty
	WGAN-GP Implementation

	Spectral Normalization GAN
	Matrix Norms
	Spectral normalization and Lipschitz norm
	Implementation
	Hinge Loss

	Quantitative Analysis
	Inception Score
	Fréchet Inception Distance
	Limitations of Inception Metrics

	Large-Scale Generative Modeling
	Progressive Growing GAN
	Big GAN
	Style GAN

	Experimental studies
	Inception metrics in practice
	DCGAN
	WGAN-GP
	SNGAN
	SNGAN on FFHQ
	SNGAN on CIFAR10

	Conclusion
	REFERENCES

